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ABSTRACT
In the past few years, micro-videos have become the dominant
trend in the social media era. Meanwhile, as the number of micro-
videos increases, users are frequently overwhelmed by their un-
interested ones. Despite the success of existing recommendation
systems developed for various communities, they cannot be applied
to routing micro-videos, since users in micro-video platforms have
their unique characteristics: diverse and dynamic interest, multi-
level interest, as well as true negative samples. To address these
problems, we present a temporal graph-guided recommendation
system. In particular, we first design a novel graph-based sequential
network to simultaneously model users’ dynamic and diverse inter-
est. Similarly, uninterested information can be captured from users’
true negative samples. Beyond that, we introduce users’ multi-level
interest into our recommendation model via a user matrix that is
able to learn the enhanced representation of users’ interest. Finally,
the system can make accurate recommendation by considering the
above characteristics. Experimental results on two public datasets
verify the effectiveness of our proposed model.

CCS CONCEPTS
• Information systems→Personalization;Recommender sys-
tems; Multimedia information systems.

KEYWORDS
Micro-video Routing; Graph-based LSTM; Multi-level Interest; Neg-
ative Samples Modeling

ACM Reference Format:
Yongqi Li, Meng Liu, Jianhua Yin, Chaoran Cui, Xin-Shun Xu, and Liqiang
Nie. 2019. Routing Micro-videos via A Temporal Graph-guided Recommen-
dation System. In Proceedings of the 27th ACM International Conference on

∗Corresponding author: Jianhua Yin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3350950

Interest: Cooking Baby Dance Basketball

Click Not Click Like FollowInteractions:

t1

t2

Figure 1: Illustration of a user’s historical interactions with
micro-videos, which reflects the user’s diverse, dynamic,
and multi-level interest.
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1 INTRODUCTION
Owing to the proliferation of micro-video platforms, such as In-
stagram1, Kuaishou2, and Tik Tok3, the amount of micro-videos
generated and shared by people are growing exponentially. Consid-
ering Kuaishou as an example, as of January 2019, it had reached
190 million active users and 10 million uploaded micro-videos daily,
and each online user usually spends up to one hour to share, search,
and view their interested micro-videos4. Nevertheless, as the micro-
videos surge, it becomes increasingly difficult and expensive for
users to locate their desired micro-videos from the vast candidates.
In the light of this, it is crucial to build a personalized recommenda-
tion system to intelligently route micro-videos to the target users.

Building a personalized recommendation system for micro-video
services is non-trivial, due to the following reasons: 1)Diverse and
dynamic interest. On the one hand, users’ interest evolves over
time, and it is hence a sequential expression. For example, as shown
in Figure 1, a user likes cooking videos at time t1, but may prefer
dance videos at t2. On the other hand, users’ interest is diverse,
namely a user may be fond of multiple topics at the same time.
In a sense, personalized recommendation requires to simultane-
ously model users’ dynamic and diverse interest information. 2)
Multi-level interest. Users may have different interaction types
on micro-videos, including “click”, “like”, and “follow”, which sig-
nal different degrees of interest. For example, “click” means the
user is attracted to the micro-video, “like” is one much enjoys and

1https://www.instagram.com/.
2https://www.kuaishou.com/.
3https://www.tiktok.com/.
4http://www.sohu.com/a/295239939_441449.
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Figure 2: Illustration of our proposed ALPINE model.

appreciates the micro-video, and “follow” refers to the user likes
the micro-video very much and wishes to see it again in future.
Heretofore, how to integrate the various degrees of interest into
personalized recommendation is largely untapped. And 3) true
negative samples. As we know, prior methods commonly assume
that nonpositive items are negative samples, which is hardly reliable
to infer which item a user did not like. Different from these models,
we are able to obtain true negative samples, i.e., micro-videos that
users preview the thumbnails yet no “click” occurs. Therefore, how
to utilize these true negative samples to explicitly model users’
uninterested information becomes a crucial problem.

For the past few years, several studies have been conducted on
the personalized recommendation, such as collaborative filtering
based models [1, 3, 12], content-based systems [5, 15, 19, 28, 29], and
hybrid methods [6, 26]. Although these methods produce promis-
ing performance on recommendation, most of them suppose users’
interest as static. Inspired by this, some researches consider users’
interest as dynamic when designing recommendation systems and
have achieved better performance [4, 7, 20, 23, 24, 27]. They, how-
ever, overlook the diverse and multi-level characteristics of users’
interest. Moreover, all the aforementioned methods commonly as-
sume that items not been clicked by users are negative and utilize
them [8, 18, 22] or sample part of them as negative samples [9, 10]
to represent users’ uninterested items. However, these presumed
negative samples may be not truly negative, and they hence may
confuse the recommendation system. As we can see, the existing
studies neither consider the diverse and multi-level interest nor
exploit users’ true uninterested items to model the recommendation
system. Therefore, they cannot be directly applied to the micro-
video recommendation.

To address the aforementioned problems, in this paper, we de-
velop an end-to-end temporAL graPh-guIded recommeNdation sys-
tEm, dubbed as ALPINE, to route micro-videos. The scheme of our
proposed approach is illustrated in Figure 2. Specifically, to model
users’ diverse and dynamic interest, we encode users’ click history
information into a graph where the node refers to micro-videos in
the click history and the edge between two nodes stands for the
temporal relationship. Based upon this graph, we design a novel
Long Short-Term Memory (LSTM) network to learn users’ interest
representation. Afterwards, we estimate the click probability via

calculating the similarity between the users’ interest representa-
tion and the embedding of the given micro-video. Considering that
users’ interest is multi-level, we introduce a user matrix to enhance
the user interest modeling by incorporating their “like” and “follow”
information. And at this step, we also get a click probability with
respect to users’ more precise interest information. Analogously,
since we know the sequence of users’ disliked micro-videos, an-
other temporal graph-based LSTM is built to characterize users’
uninterested information, and the other click probability can be
estimated based on true negative samples. We can thus obtain a
click probability regarding users’ uninterested information. Finally,
the weighted sum of the above three probability scores is set as our
final prediction result.

The key contributions of this work are three-fold:
• We design a novel micro-video recommendation system by
jointly modeling the sequential and diverse interest of the
user. In addition, considering that users’ uninterested points
are also dynamic and important to micro-video recommen-
dation, we develop a temporal graph-based LSTM network
to characterize users’ uninterested history as well.

• To enhance users’ interest representation and further im-
prove the recommendation performance, we introduce a user
matrix to record users’ multi-level interest and integrate it
into our recommendation system.

• We evaluate our proposed model on two public micro-video
datasets to comparatively demonstrate the superiority of our
model. As a side contribution, we have released the data and
codes5 of this work to facilitate other researchers.

2 RELATEDWORK
Our work is closely related to video recommendation and micro-
video understanding.

2.1 Video Recommendation Systems
Recommender systems are vital in video communities, such as
Youtube6, Vimeo7, and Veoh8. The exiting methods can be roughly
categorized as collaborative filtering basedmethods [1, 3, 12], content-
based methods [5, 15, 19, 28, 29], and hybrid methods [6, 26]. In
terms of collaborative filtering, Baluja et al. [1] utilized the ran-
dom walk through a co-view graph to recommend YouTube videos.
Chen et al. [3] integrated an attention mechanism into collabora-
tive filtering with implicit feedback and evaluated its effectiveness
in multimedia recommendation. However, collaborative filtering
based methods cannot well solve the cold start problem. By contrast,
the content-based methods recommend videos by calculating the
similarity between new videos and users’ historical accessed videos.
For example, Mei et al. [15] proposed a contextual recommendation
system based on multimodal fusion and relevance feedback. With
respect to the hybrid models, they aim to combine the above two
methods within a unified framework. For example, the recommen-
dation model presented in [26] generates multiple ranking lists via
exploring different information sources in a multi-task framework.

5https://anonymous1240.wixsite.com/alpine.
6https://www.youtube.com/.
7https://vimeo.com/.
8https://www.veoh.com/.
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Since the underline assumption of the traditional video recommen-
dation models is that users’ interest is static, therefore they cannot
be applied to extract users’ dynamic interest.

Recently, many models have been proposed to characterize users’
dynamic preferences. These methods are in three variants: Convo-
lutional Neural Network (CNN) based methods [23, 24], Recurrent
Neural Network (RNN) based methods [7, 20], and self-attention
based methods [4, 27]. As a typical example in the first category,
Tuan et al. [24] utilized 3-D CNNs to combine session clicks and
content features to generate recommendations. As for RNN based
methods, Quadrana et al. [20] proposed the RNN based approach
for session-based recommendation, which relays and evolves la-
tent hidden states of the RNNs across user sessions . In [7], the
authors proposed a dynamic RNN to model users’ dynamic inter-
est for the personalized video recommendation. Due to the high
time consumption and long sequence restriction, the self-attention
mechanism has been applied to recommender systems and gained
impressive performance. For example, Zhou et al. [27] proposed
an attention-based user behaviour model by considering hetero-
geneous user behaviours in e-commerce. Although the aforemen-
tioned methods have considered users’ dynamic interest and been
successfully applied to video communities, they are inadequate to
handle micro-video communities due to their different character-
istics. In particular, micro-video communities continuously route
micro-videos to users and users click their interested ones by pre-
viewing the thumbnails; whereas traditional video communities are
apt to display users’ interested videos via their query information.
In addition, users’ interest information in micro-video communities
has a multi-level structure.

2.2 Micro-video Understanding
Due to the continuously booming of micro-videos on the social
network, micro-video content analysis has attracted wide attention
from the academic field in recent years [14, 16, 21]. Chen et al. [2]
presented a novel low-rank multi-view embedding learning frame-
work to perform popularity prediction for micro-videos. To better
understand the micro-videos, Liu et al. [13] utilized LSTMs and
a CNN to respectively model the spare concept and multi-modal
sequential information. And Nie et al. [17] enhanced the acoustic
modality for the venue category estimation task.Besides, there are
a few researches on the micro-video recommendation. For exam-
ple, Huang et al. [11] fused multimodal features of micro-videos to
model users’ personalized interest. Chen et al. [4] adopted forward
multi-head self-attention methods with item-level and category-
level attention to model user behaviours.

To the best of our knowledge, the exiting micro-video recommen-
dation methods only extend the traditional video recommendation
to the micro-video domain and ignore the distinct characteristics,
especially the multi-level interest. Our proposed micro-video rec-
ommendation system differs from the aforementioned methods
mainly in two aspects: 1) We regarded users’ viewing history as
a temporal structure and designed a graph-based LSTM to model
their diverse and dynamic interest. And 2) we considered multiple
types of interactions within micro-video platforms, which reflect
various degrees of interest. It is worth highlighting that the users’
uninterested points are also meaningful and therefore captured in
our model.
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Figure 3: Structure of the temporal graph-based LSTM layer.
(a) Illustration of the temporal graph construction. And (b)
details of the temporal graph-based LSTM unit.

3 OUR PROPOSED MODEL
As Figure 2 illustrates, our proposed ALPINE model comprises the
following three components: 1) The temporal graph-based LSTM
layer. It leverages users’ “click” and “not click” historical behaviours
to extract their dynamic and diverse interested and uninterested
feature sequences, respectively; 2) Themulti-level interest modeling
layer. The user matrix module explores the multi-level interest
information to enhance users’ interest representation; And 3) the
prediction layer. It estimates users’ click probability for the given
micro-video.

3.1 Problem Formulation
Let v and u denote a micro-video and a user, respectively. We
present the user’s historical information as a sequence of micro-
videos U = {(u,vtj )}

m
t=1, where j ∈ {c,n, l , f } respectively repre-

sents user’s “click”, “not click”, “like”, and “follow” behaviours, and
m is the length of the sequence. As the user’s interest is multi-level,
its sequential behaviours can be segmented into four sub-sequences,
namely “click” sequence Uc = {(u,vtcc )}

mc
tc=1, “not click” sequence

Un = {(u,vtnn , )}
mn
tn=1, “like” sequenceUl = {(u,v

tl
l )}

ml
tl=1, and “fol-

low” sequenceUf = {(u,v
tf
f )}

mf
tf =1, wheremc +mn +ml +mf =m.

As such, the micro-video recommendation problem can be formally
defined as:

Input: The user’s multi-level behaviour sequences Uc , Un , Ul ,
andUf , and the given micro-video vnew .

Output: A recommendation system predicting the click proba-
bility of the user u on the new micro-video vnew .

3.2 The Temporal Graph-based LSTM Layer
To model users’ dynamic interest from their historical “click” infor-
mationUc , a direct way is to utilize the LSTM network to model
the temporal sequence and obtain their interest representation.
Formally, the above process can be formulated as,

it = σ (Wixxt +Wihht−1 + bi ),
ft = σ (Wf xxt +Wf hht−1 + bf ),
ot = σ (Woxxt +Wohht−1 + bo ),
ut = tanh(Wuxxt +Wuhht−1 + bu ),
ct = it ⊙ ut + ft ⊙ ct−1,
ht = ot ⊙ tanh(ct ),

(1)



where xt is the micro-video embedding at the time step t ; it , ft , ot ,
ct , and ht respectively denote the input gate, forget gate, output
gate, memory cell, and hidden state; σ denotes the logistic sigmoid
function; and ⊙ denotes element wise multiplication. Although the
LSTMnetwork is capable of memorizing information from sequence
data, we argue that it is insufficient to capture user’s diverse interest
from the very long historical sequence. Particularly, if the user’s
historical sequence only relates to one topic, the LSTM network
indeed can capture user’s single interest. However, as discussed
before, interest is diverse, as shown in the Figure 1. Thereby, it may
fail to memorize the user’s diverse interest information from the
very long sequence.

To tackle the aforementioned problem, we consider to enhance
the memorization of user’s diverse interest by integrating an in-
terest graph into the LSTM network. The detail of our temporal
graph-based LSTM layer is illustrated in Figure 3. In particular,
given the user’s click sequence Uc , we build a temporal graph
Gc =< vc , ec >. We view micro-videos in Uc as nodes, and link
two nodes according to the following two rules: 1) To model the
user’s dynamic interest, each micro-video vtcc should be connected
with its preceding micro-video vtc−1c , namely < vtc−1c ,vtcc >; 2) To
memorize the diverse interest of the user, we force each micro-video
to link with the preceding micro-videos which share the similar vi-
sual information. Given a micro-videovtcc , we estimate its similarity
with respect to its pre-context micro-videos and connect it with the
most similar one9, namely < vt

∗
c
c ,v

tc
c >. In the light of this, we con-

struct a temporal interest graph, where each node represents one
of the user’s interested micro-videos, and each edge represents the
relationship between the user’s interested micro-videos. Moreover,
for extracting the user’s interested feature sequence, we design
a novel graph-based LSTM network. Formally, we formulate this
network as follows,

it = σ (Wixxt +Wihht−1 + bi ),
ft = σ (Wf xxt +Wf hht−1 + bf ),
ot = σ (Woxxt +Wohht−1 + bo ),
ut = tanh(Wuxxt +Wuhht−1 + bu ),
ct = it ⊙ ut + ft ⊙ ct−1,

i∗t = σ (W∗
ixxt +W

∗
ihh

∗ + b∗i ),

f∗t = σ (W∗
f xxt +W

∗
f hh

∗ + b∗f ),

o∗t = σ (W∗
oxxt +W

∗
ohh

∗ + b∗o ),

u∗t = tanh(W∗
uxxt +W

∗
uhh

∗ + b∗u ),

c∗t = i∗t ⊙ u∗t + f
∗
t ⊙ c∗,

ht = ot ⊙ tanh(ct ) + o∗t ⊙ tanh(c∗t ),

(2)

where xt is the micro-video embedding at the time step t , ht−1
and ct−1 are respectively the hidden state and memory cell at the
time step t−1, linking by edge < vtc−1c ,vtcc >, and h∗ and c∗ are
the hidden state and memory cell at the time step t∗, linking by
edge < v

t ∗c
c ,v

tc
c >. Therefore, our temporal graph-based LSTM

network can simultaneously leverage user’s neighbor and cross-
time interested context information to enhance the memorization of
diverse interest and further strengthen the interest representation.
9 The number of similar micro-videos that should be linked is detailed in Section 4.6.
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Figure 4: Structure of the Prediction Layer.
And we can obtain the user’s interested feature sequence Fin =
[hin,1,hin,2, . . . ,hin,mc ] ∈ R

dc×mc , where dc is the dimension of
each hidden state in Fin .

As the user’s uninterested points are also dynamic and diverse,
we build another temporal graph-based LSTM layer to model the
user’s Un sequence and then obtain the uninterested feature se-
quence of the user, i.e., Fun = [hun,1,hun,2, . . . ,hun,mn ] ∈ R

dn×mn ,
where dn is the dimension of each hidden state in Fun .

3.3 The Multi-level Interest Modeling Layer
Since there are multiple interactions between a user and a micro-
video and they reflect different degrees of user’s interest, we pro-
pose a multi-level interest modeling layer to further obtain the
enhanced interest representation. As the “like” and “follow” be-
haviours indicate users’ stronger interest compared with the “click”
one, we hence utilize the “like” and “follow” information to enhance
the interest representation. Particularly, for the user u, we set the
weighted sum of micro-video representations in Ul and Uf as the
user’s enhanced interest feature fen , formulated as,

fen = wl

ml∑
tl=1

xtll +wf

mf∑
tf =1

x
tf
f , (3)

where xtll is the embedding of micro-video vtll in Ul , x
tf
f is the

embedding of micro-video v
tf
f in Uf , wl and wf are the hyper

parameters controlling the weights between “like” and “follow”.
With the enhanced interest representation fen , we can construct

an embedding matrix U ∈ RN×D , i.e., user matrix, where N and D
respectively denote the number of users and the dimension of the
enhanced interest representations. As the user’s “like” and “follow”
information more precisely indicates the user’s interest, we can
obtain more accurate interest representations using the user matrix.
The user matrix U will be updated in the training phrase. Moreover,
for each user, we utilize embedding lookup strategy to search the
user’s enhanced interest representation from the matrix U during
the training and testing phrase.

3.4 The Prediction Layer
Standing on the shoulder of the user’s interested feature sequence
Fin , uninterested feature sequence Fun , and enhanced interest rep-
resentation fen , we place a prediction layer to get the click probabil-
ity of the given micro-videovnew , as shown in Figure 4. Specifically,
we first feed Fin and the embedding of the given micro-video xnew



into a vanilla attention layer to obtain the improved interested rep-
resentation fin . Formally, the attention layer is defined as follows,


α j =

exp(f (hin, j ,xnew ))∑mc
j=1 exp(f (hin, j ,xnew ))

,

f (hin, j ,xnew ) = hTin, jWxnew ,

(4)

where hin, j ∈ Rdc , xnew ∈ RD , W ∈ Rdc×D , and α j denotes
the attention score of the jth interested feature in Fin . With the
attention weight α j , the improved interested representation is
computed as follows,

fin =
mc∑
j=1

α jhin, j . (5)

Thereafter, we concatenate the improved interested representation
fin and the representation of the new micro-video xnew , and then
feed it into a multi-layer perception (MLP) network, as follows,{

f1 = ϕ(W1[fin ,xnew ] + b1),
ŷin =W2f1 + b2,

(6)

where W1 ∈ Rd
′

c×(dc+D) and W2 ∈ R1×dc
′

denote the weight
matrixes, b1 ∈ Rd

′

c and b2 respectively denote the bias vector
and the bias value, and ϕ denotes the ReLU activation function.
ŷin is the click probability calculated by the improved interested
representation fin .

Similarly, we can obtain the improved uninterested representa-
tion fun based on Fun and xnew using another vanilla attention
layer. Afterwards, we feed the concatenation of the improved unin-
terested representation fun and the new micro-video embedding
xnew into two MLP layers, and obtain the click probability based
on the improved uninterested representation, i.e., ŷun . Analogously,
the click probability based on the enhanced interest representa-
tion, i.e., ŷen , can be obtained by feeding the concatenation of the
enhanced interest representation fen and the new micro-video em-
bedding xnew into two MLP layers.

Finally, the weighted sum of the above three probability values
is set as our prediction result,

ŷ = α1ŷin + α2ŷun + α3ŷen , (7)

where α1, α2, and α3 are the hyper parameters controlling the
weights of ŷin , ŷun , and ŷen , respectively, and ŷ is the final output
of our model denoting the click probability of the given user on the
given new micro-video.

Our method is trained as an end-to-end deep learning model
equipped with the sigmoid cross-entropy loss:

L(ŷ) = −(y logσ (ŷ) + (1 − y) log(1 − σ (ŷ))), (8)

where σ denotes the sigmoid activation function and y ∈ {0, 1} is
the ground truth that indicates whether the user clicks the micro-
video or not. Besides, the Back-Propagation Through Time (BPTT)
method is adopted to train our ALPINE model.

Table 1: Statistics of the two datasets.

Dataset Dataset I Dataset II

# users 10,000 10,986
# items 3,239,534 1,704,880

# interactions 13,661,383 12,737,619
# interaction types 4 2

#average interactions per user 1366.14 1159.44
#average interactions per item 4.28 7.47
#average clicked items per user 277 218
#interactions in training set 10,931,092 8,970,310
#interactions in test set 2,730,291 3,767,309

4 EXPERIMENTS
4.1 Dataset
Dataset I. The first dataset is released by the Kuaishou Competi-
tion10 in ChinaMM2018 conference, which aims to infer users’ click
probabilities for new micro-videos. In this dataset, there are mul-
tiple interactions between users and micro-videos, such as “click”,
“not click”, “like”, and “follow”. Particularly, “not click” means the
user did not click the micro-video after previewing its thumbnail.
Moreover, each behaviour is associated with a timestamp, which
records when the behaviour happens. We have to mention that
the timestamp has been processed such that the absolute time is
unknown, but the sequential order can be obtained according to
the timestamp. For each micro-video, the contest organizers have
released its 2,048-d visual embedding of its thumbnail. Among the
large-scale dataset, we randomly selected 10,000 users and their
3,239,534 interacted micro-videos to construct the Dataset I.

Dataset II. The second dataset is constructed by [4] for micro-
video click-through prediction. It consists of 10,986 users, 1,704,880
micro-videos, and 12,737,619 interactions. Different from Dataset I,
Dataset II only contains the “click” and “not click” behaviours. In
this dataset, each micro-video is represented by the 512-d visual
embedding extracted from its thumbnail and associated with a
category label, and each user’s behaviour is linked with a processed
timestamp.

The statistics of the above two datasets are summarized in Table
1. The reported experimental results in this paper are based on
these two datasets. Specifically, we set the first 80% of a user’s
historical accessed micro-videos as the training set and the rest of
20% as the test set in the Dataset I. As for Dataset II, we utilized
the same setting with [4]. It is worth mentioning that we adopted
the Principal Component Analysis (PCA) [25] to reduce the micro-
video’s visual embedding to 64 dimension.

4.2 Experimental Settings
Evaluation Protocols. To thoroughly measure our model and the
baselines, we employed P@K , R@K , F@K , and Area Under Curve
(AUC) as the evaluation metrics to measure the model performance
from different angles. Given the recommendation list computed
based on the click probability, P@K indicates the percentage of
actually clicked items in the topK items of the recommendation list,
R@K is the recall value of the topK items, and F@K is the harmonic
average of precision and recall of the top K items. Moreover, the

10https://www.kesci.com/home/competition/5ad306e633a98340e004f8d1.



Table 2: Performance comparison between our proposed model and several state-of-the-art baselines over two datasets. And
statistical significance over AUC between ALPINE and the best baseline (i.e., THACIL) is determined by a t-test (△ denotes
p-value<0.01).

Methods Dataset I Dataset II
AUC P@50 R@50 F@50 AUC P@50 R@50 F@50

BPR 0.595 0.290 0.387 0.331 0.583 0.241 0.181 0.206
LSTM-R 0.713 0.316 0.420 0.360 0.641 0.277 0.205 0.236
CNN-R 0.719 0.312 0.413 0.356 0.650 0.287 0.214 0.245
ATRank 0.722 0.322 0.426 0.367 0.660 0.297 0.221 0.253
NCF 0.724 0.320 0.420 0.364 0.672 0.316 0.225 0.262

THACIL 0.727 0.325 0.429 0.369 0.684 0.324 0.234 0.269
ALPINE 0.739△ 0.331 0.436 0.376 0.713△ 0.300 0.460 0.362

AUC is formulated as,

AUC =
1
|U|

∑
u ∈U

1
|I+u | |I−

u |

∑
i ∈I+u

∑
j ∈I−

u

δ (ŷu,vi > ŷu,vj ), (9)

where ŷu,vi and ŷu,vj are the predicted probabilities of user-video
pairs (u,vi ) and (u,vj ) in the test set,U is the user set, I+u and I−

u
respectively denote the set of micro-videos clicked/not clicked by
the user, and δ denotes the indicator function.

Implementation Details. In the Dataset I, we utilized the 64-d
visual embedding to represent the micro-video. As for the Dataset
II, the concatenation of the 64-d category embedding and the 64-d
visual embedding is set as the micro-video embedding. The length
of users’ historical sequence is set to 300. If it exceeds 300, we
truncated it to 300; otherwise, we padded it to 300 and masked the
padding in the network. We optimized the parameters using Adam
with the initial learning rate 0.001, and the batch size is 2048. And
α1, α2, and α3 are 0.58, 0.18, and 0.24 on Dataset I and 0.68, 0.32,
and 0 on Dataset II.

4.3 Baselines
To demonstrate the effectiveness of our proposed ALPINE model,
we compared it with the following state-of-the-art methods:

• BPR [22]: This is a Bayesian personalized ranking model,
which trains on pairwise items by maximizing the difference
between the posterior probability of the positive samples
and the negative ones.

• CNN-R: This model is a CNN based recommendation sys-
tem, which utilizes the CNN structure to model sequential
information. In particular, it first applies different convolu-
tional kernels to the sequential feature matrix. Explicitly, the
window size varies from one to ten, and each kernel size has
32 linear filters. Thereafter, it feeds the obtained feature map
into the max pooling layer followed by a fully connected
layer to obtain interest embedding. Finally, a MLP is followed
to predict the click probability.

• LSTM-R: This model utilizes the LSTM network to model
the user’s sequential information. Having obtained the hid-
den states, it feeds them into a fully connected layer to gen-
erate the interest representation, and then a MLP module is
adopted to predict the click probability.

• ATRank [27]: It is an attention-based user behaviour mod-
eling framework, which captures the user’s behaviour in-
teractions in multiple semantic spaces by the self-attention
mechanism.

• NCF [8]: It is a collaborative filtering based deep recommen-
dation model, which learns the user embedding and the item
embedding with a shallow network (element-wise product
between user and item) and a deep network (concatenation
of the user and item embedding followed by several MLP
layers).

• THACIL [4]: It is a self-attention based method for the
micro-video recommendation, which utilizes a multi-head
self-attention layer to capture the long-term correlation
within user behaviours and the item and category two level
attention layer to model the fine-grained profiling of the user
interest.

It is worth mentioning that THACIL and ATRank utilize the
same click probability prediction layer as our model. As to the
other methods including CNN-R, LSTM-R, BPR, and NCF, we fed
the interest representations and the embedding of the new micro-
video into the MLP layer to predict the click probability.

4.4 Overall Comparison
We conducted an empirical study to investigate whether our pro-
posed model can achieve better recommendation performance. The
results of all methods on two datasets are summarized in Table 2.
And several observations stand out:

• BPR performs worse than the other baselines since it over-
looks the sequential characteristic of the users’ interest infor-
mation. It hence fails to exploit the user’s dynamic interest,
revealing the necessity of modeling the historical sequence.

• Sequential modeling methods, including LSTM-R, CNN-R,
ATRank, and THACIL, surpass the BPR model. This veri-
fies the effectiveness of sequence modeling. Moreover, the
self-attention based models, i.e., ATRank and THACIL, out-
perform CNN-R and LSTM-R, especially the latter one. It
reveals that simply utilizing the LSTM network is insufficient
to capture the users’ dynamic and diverse interest informa-
tion from a very long sequence. The attention mechanism
can implicitly reduce the memorization length by focusing
on the key interest information, that is why ATRank and
THACIL achieve better performance on two datasets.

• While NCF does not model the user’s historical information
as a sequence, it also achieves promising performance com-
pared with the other baselines. Probably because setting a
user embedding matrix and updating it in the training stage
can improve the interest representation. Moreover, two op-
erations, the element wise product and several MLPs, model
the relationship between users and items better.



Table 3: Component-wise validation of our proposed ALPINE model by disabling one component each time. And statistical
significance over AUC among all baselines is determined by a t-test (△ denotes p-value<0.01 and ^ denotes p-value<0.05).

Methods Dataset I Dataset II
AUC P@50 R@50 F@50 AUC P@50 R@50 F@50

ALPINE_u 0.737^ 0.330 0.435 0.375 0.702△ 0.294 0.454 0.356
ALPINE_m 0.735△ 0.329 0.433 0.374 - - - -
ALPINE_um 0.734△ 0.327 0.432 0.372 - - - -

ALPINE_umg/ALPINE_ug 0.716△ 0.318 0.426 0.363 0.654△ 0.291 0.219 0.250
ALPINE 0.739 0.331 0.436 0.376 0.713 0.300 0.460 0.362
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Figure 5: Recommendation performance versus the number of returned items K .

• ALPINE achieves the best performance, substantially sur-
passing all the baselines. Particularly, ALPINE presents con-
sistent improvements over sequential models like ATRank
and THACIL, verifying the importance of memorizing the
prior interested information and employing the temporal
graph-based LSTM network on enhancing the interest rep-
resentation. In addition, our proposed ALPINE exceeds NCF,
because NCF randomly initializes the user matrix rather
than explores its multi-level interest information. This jus-
tifies the effectiveness of our proposed multi-level interest
modeling module. Moreover, as ALPINE also characterizes
the user’s uninterested cues, which can further improve the
recommendation performance.

In addition, we also conducted the significance test between our
model and the most competitive baseline THACIL. We can see that
the advantage of our model is statistically significant as p-value is
2.81 × 10−5 on the Dataset I and 4.70 × 10−6 on the Dataset II.

To justify the robustness of our proposed model, we compara-
tively explored the performance of our model and the baselines by
varying the number of returned items K . Figure 5 shows the results
regarding the performance comparison on K :

• Jointly analyzing the performance of the models in Figures
5(a) and 5(d), we found that increasing the number of re-
turned items K degrades the precision value of the recom-
mendation. But ourmodel ALPINE outperforms others under
the same experimental setting, especially on the Dataset I.

• The performance of all these methods over recall and F value
rises fast as the number of returned items K linearly in-
creases. Their curves then gradually ascend to a steady state.
Our method ALPINE consistently and remarkably outputs
a higher accuracy as compared to that of other methods,
especially on the Dataset II. This verifies the robustness of
our model.

4.5 Component-wise Evaluation of ALPINE
We studied the variants of our model to further investigate the
effectiveness of the uninterested representation modeling, user-
matrix, and temporal interest graph:

• ALPINE_u: We eliminated the uninterested representation
modeling part from the model. Namely, we computed the
final click probability by interested representation and multi-
level interest representation.

• ALPINE_m: We eliminated the multi-level interest module.
That is, the final click probability is computed by the user’s
interested and uninterested representation.

• ALPINE_um:We only utilized the user’s interested sequence
to predict the click probability, namely we eliminated both
the uninterested representation modeling and the multi-level
interest modeling layer.

• ALPINE_umg: We eliminated the graph information from
the ALPINE_um model.

We compared these variants on the two datasets, and Table 3
summarizes the results regarding the component-wise comparison.
By jointly analyzing Table 3, we gained the following insights:



• By jointly analyzing the performance of ALPINE_u on the
two datasets, it can be seen that removing the uninterested
representation modeling degrades the recommendation re-
sults. To be more specific, ALPINE_u has dropped by 0.2% on
the Dataset I and 1.1% on the Dataset II in terms of AUC. This
verifies the effectiveness of the uninterested representation
modeling.

• ALPINE surpasses ALPINE_m, indicating that incorporating
the user matrix layer is beneficial to strengthen the interest
representation. Moreover, compared with ALPINE_u, the
performance of ALPINE_um conformably drops 0.3% un-
der four metrics, which further reflects the effectiveness of
our multi-level interest modeling layer. It is worth mention-
ing that the Dataset II only contains “click” and “not click”
interaction, therefore the corresponding results are vacant.

• ALPINE_um shows the consistent improvements over the
ALPINE_umg on theDataset I andALPINE_ug on theDataset
II. Specifically, the improvements of ALPINE_um over these
models in terms of AUC are 2.3% on the Dataset I and 5.9%
on the Dataset II, demonstrating the great advantage of our
novel temporal graph-based LSTM network on capturing
both dynamic and diverse interest.
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Figure 6: Illustration of the neighbor size L of the temporal
graph on our recommendation performance.

4.6 Justification of the Temporal Graph
Apart from achieving the superior performance, the key advantage
of ALPINE over other methods is that its temporal graph structure
is able to strengthen the interest representation. Towards this end,
we carried out experiments over the two datasets to verify the
influence of the neighbor size L of the temporal graph.

In this experiment, we selected the top L similar micro-videos
from the graph as neighbors of the given micro-video rather than
considering the top one. Specifically, we set the average of the top L
similar micro-videos’ hidden states and memory cells as h∗ and c∗
in Eqn.(2), respectively. The comparison results versus the neighbor
size L are illustrated in Figure 6. We found that the performance
consistently drops under different evaluation metrics when L in-
creases, especially the AUC drops significantly. This may be due to
the fact that much more noise is introduced when a micro-video
is connected with many others. Therefore, in this paper, we set L
equals to one.
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Figure 7: Visualization of the attention mechanism in the
prediction layer.

4.7 Attention Visualization
As analyzed before, we fed the interested feature sequence Fin and
a new micro-video’s embedding xnew into a vanilla attention layer
to obtain the improved interested representation. To intuitively
illustrate the attention results, we randomly selected some new
micro-videos from the test data and visualized the attention scores
in Figure 7. Several interesting observations stand out:

• For each new micro-video, the attention scores of its histori-
cal clicked micro-videos are different, which indicates that
different micro-videos in the historical sequence contribute
differently.

• By and large, the earlier a micro-video locates in the se-
quence, the smaller the attention score is, which indicates
that the latter clicked micro-videos contribute more to the
recommendation. This observation strongly supports that
the user’s interest is dynamic.

• By visualizing the categories of micro-videos, we noticed
that, micro-videos from the same category contributes more
to the recommendation results. As shown in the sub-figure
of Figure 7, the new given micro-video belongs to the 55-th
category, and the attention mainly focuses on the micro-
videos of the same category in the historical sequence. This
demonstrates the attention layer can help obtain improved
features according to different new micro-videos.

5 CONCLUSION
In this work, we present a temporal graph-based LSTM model to
intelligently route micro-videos to the target users. To capture
the users’ dynamic and diverse interest, we encode their histori-
cal interaction sequence into a temporal graph and then design a
novel temporal graph-based LSTM to model it. As different inter-
actions reflect different degrees of interest, we build a multi-level
interest modeling layer to enhance users’ interest representation.
Moreover, our model extracts uninterested information from true
negative samples to improve the recommendation performance.
To justify our scheme, we perform extensive experiments on two
public datasets, and the experimental results demonstrate the effec-
tiveness of our model.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foun-
dation of China, No.: 61772310, No.:61702300, No.:61702302, No.:
61802231, and No. U1836216; the Project of Thousand Youth Talents
2016; the Shandong Provincial Natural Science and Foundation, No.:
ZR2019JQ23, No.:ZR2019QF001; the Future Talents Research Funds
of Shandong University, No.: 2018WLJH 63.



REFERENCES
[1] Shumeet Baluja, Rohan Seth, D Sivakumar, Yushi Jing, Jay Yagnik,

Shankar Kumar, Deepak Ravichandran, andMohamed Aly. 2008. Video
suggestion and discovery for youtube: taking random walks through
the view graph. In Proceedings of the ACM International Conference on
World Wide Web. 895–904.

[2] Jingyuan Chen, Xuemeng Song, Liqiang Nie, Xiang Wang, Hanwang
Zhang, and Tat-Seng Chua. 2016. Micro tells macro: predicting the
popularity of micro-videos via a transductive model. In Proceedings of
the ACM International Conference on Multimedia. 898–907.

[3] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu,
and Tat-Seng Chua. 2017. Attentive collaborative filtering: multimedia
recommendation with item-and component-level attention. In Pro-
ceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval. 335–344.

[4] Xusong Chen, Dong Liu, Zheng-Jun Zha, Wengang Zhou, Zhiwei
Xiong, and Yan Li. 2018. Temporal hierarchical attention at category-
and item-level for micro-video click-through prediction. In Proceedings
of the ACM International Conference on Multimedia. 1146–1153.

[5] Peng Cui, Zhiyu Wang, and Zhou Su. 2014. What videos are similar
with you?: Learning a common attributed representation for video
recommendation. In Proceedings of the ACM International Conference
on Multimedia. 597–606.

[6] Andrea Ferracani, Daniele Pezzatini, Marco Bertini, and Alberto
Del Bimbo. 2016. Item-based video recommendation: An hybrid ap-
proach considering human factors. In Proceedings of the ACM on Inter-
national Conference on Multimedia Retrieval. 351–354.

[7] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. 2017. A unified
personalized video recommendation via dynamic recurrent neural
networks. In Proceedings of the ACM International Conference on Mul-
timedia. 127–135.

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. 2017. Neural collaborative filtering. In Proceedings of
the ACM International Conference on World Wide Web. 173–182.

[9] XiangnanHe, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016.
Fast matrix factorization for online recommendation with implicit
feedback. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval. 549–558.

[10] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative
filtering for implicit feedback datasets. In Proceedings of the IEEE Inter-
national Conference on Data Mining. 263–272.

[11] Lei Huang and Bin Luo. 2017. Personalized micro-Video recommen-
dation via hierarchical user interest modeling. In Springer Pacific Rim
Conference on Multimedia. 564–574.

[12] Yanxiang Huang, Bin Cui, Jie Jiang, Kunqian Hong, Wenyu Zhang,
and Yiran Xie. 2016. Real-time video recommendation exploration.
In Proceedings of the ACM International Conference on Management of
Data. 35–46.

[13] Meng Liu, Liqiang Nie, MengWang, and Baoquan Chen. 2017. Towards
micro-video understanding by joint sequential-sparse modeling. In
Proceedings of the ACM International Conference on Multimedia. 970–
978.

[14] Meng Liu, Liqiang Nie, Xiang Wang, Qi Tian, and Baoquan Chen. 2018.
Online data organizer: micro-video categorization by structure-guided
multimodal dictionary learning. IEEE Transactions on Image Processing
28, 3 (2018), 1235–1247.

[15] Tao Mei, Bo Yang, Xian-Sheng Hua, and Shipeng Li. 2011. Contextual
video recommendation by multimodal relevance and user feedback.
ACM Transactions on Information Systems 29, 2 (2011), 10.

[16] Liqiang Nie, Xuemeng Song, and Tat-Seng Chua. 2016. Learning from
multiple social networks. Synthesis Lectures on Information Concepts,
Retrieval, and Services 8, 2 (2016), 1–118.

[17] Liqiang Nie, Xiang Wang, Jianglong Zhang, Xiangnan He, Hanwang
Zhang, Richang Hong, and Qi Tian. 2017. Enhancing micro-video
understanding by harnessing external sounds. In Proceedings of the
ACM International Conference on Multimedia. 1192–1200.

[18] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose,
Martin Scholz, and Qiang Yang. 2008. One-class collaborative filtering.
In Proceedings of the IEEE International Conference on Data Mining.
502–511.

[19] Jonghun Park, Sang-Jin Lee, Sung-Jun Lee, Kwanho Kim, Beom-Suk
Chung, and Yong-Ki Lee. 2011. Online video recommendation through
tag-cloud aggregation. IEEE Transaction on MultiMedia 18, 1 (2011),
78–87.

[20] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo
Cremonesi. 2017. Personalizing session-based recommendations with
hierarchical recurrent neural networks. In Proceedings of the Eleventh
ACM Conference on Recommender Systems. ACM, 130–137.

[21] Miriam Redi, Neil O’Hare, Rossano Schifanella, Michele Trevisiol, and
Alejandro Jaimes. 2014. 6 seconds of sound and vision: Creativity in
micro-videos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 4272–4279.

[22] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the AUAI Conference on Uncertainty
in Artificial Intelligence. 452–461.

[23] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recom-
mendation via convolutional sequence embedding. In Proceedings of
the ACM International Conference on Web Search and Data Mining.
565–573.

[24] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D convolutional net-
works for session-based recommendation with content features. In
Proceedings of ACM International Conference on Recommender Systems.
138–146.

[25] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal compo-
nent analysis. Chemometrics and Intelligent Laboratory Systems 2, 1-3
(1987), 37–52.

[26] Xiaojian Zhao, Guangda Li, Meng Wang, Jin Yuan, Zheng-Jun Zha,
Zhoujun Li, and Tat-Seng Chua. 2011. Integrating rich information for
video recommendation with multi-task rank aggregation. In Proceed-
ings of the ACM International Conference on Multimedia. 1521–1524.

[27] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao,
Xiusi Chen, and Jun Gao. 2018. Atrank: An attention-based user
behavior modeling framework for recommendation. In Proceedings of
the AAAI Conference on Artificial Intelligence.

[28] Xiangmin Zhou, Lei Chen, Yanchun Zhang, Longbing Cao, Guangyan
Huang, and Chen Wang. 2015. Online video recommendation in
sharing community. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 1645–1656.

[29] Qiusha Zhu, Mei-Ling Shyu, and Haohong Wang. 2013. Videotopic:
Content-based video recommendation using a topic model. In Proceed-
ings of the IEEE International Symposium on Multimedia. 219–222.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Video Recommendation Systems
	2.2 Micro-video Understanding

	3 Our proposed Model
	3.1 Problem Formulation
	3.2 The Temporal Graph-based LSTM Layer
	3.3 The Multi-level Interest Modeling Layer
	3.4 The Prediction Layer

	4 EXPERIMENTS
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Baselines
	4.4  Overall Comparison
	4.5 Component-wise Evaluation of ALPINE
	4.6 Justification of the Temporal Graph
	4.7 Attention Visualization

	5 CONCLUSION
	Acknowledgments
	References

